Inscrivez-vous à la newsletter

Inscrivez-vous à la newsletter

Abonnez-vous maintenant et nous vous tiendrons au courant.
Nous respectons votre vie privée. Vous pouvez vous désabonner à tout moment.

Amazon Rekognition Image : recherchez des photos dans votre bibliothèque familiale

Partager sur linkedin
Partager sur twitter
Partager sur facebook

Je possède une bibliothèque de photos assez volumineuse d’environ 20000 photos. La votre est sans doute plus volumineuse et rechercher une photo particulière peut devenir une gageure. Devant faire un montage photos pour le mariage de mon fils, la recherche de photos le concernant s’est vite transformée en travail de bénédictin.

Et au bout de 2000 photos parcourues, … ça a fait tilt. Pourquoi ne pas essayer le service Amazon Rekognition !

Cela ne fait ni une ni deux, en avant la réalisation, un challenge d’informaticien vs un travail de galérien. C’est vrai qu’il me restait encore 18000 photos.

Amazon Rekognition Image est un service possédant de nombreuses possibilités, notamment celle de rechercher des visages particuliers sur des photos, mais aussi de détecter des situations sur des photos, sourire des personnages, présences d’objets, de paysages particuliers, images inappropriées, …

 

Principe

Le principe dans la fonctionnalité de détection de visages est de fournir une photo de référence afin de comparer les autres photos à cette référence. Je vais pour ma part réaliser deux passes avec des photos de référence différentes : une première avec mon fils enfant, une deuxième avec mon fils adolescent.

Je dépose la bibliothèque de photos familiale sur un bucket S3. Dans ce bucket, à la racine de l’arborescence, je dépose la photo de référence à utiliser, choisie bien sûr parmi les portraits les plus réalistes. Les images peuvent être situées sur un serveur on premise ou sur un poste de travail hors cloud. Dans ce cas, il y aura, en plus du temps de traitemen,t le temps de transfert des images.

Le script shell utilisé et donné ci-dessous liste récursivement les photos et les soumet au service Rekognition avec la photo de référence.

 

Réalisation

La réalisation consiste à mettre en place un script shell pour réaliser les appels à Amazon Rekognition avec AWS Cli. Des librairies sont disponibles dans les différents langages de programmation pour intégrer ce service dans vos applications. Le script shell ci-dessous est opérationnel, il suffit d’attribuer les bons droits (S3 et Rekognition) sur le user AWS qui l’exécute et de modifier les constantes qui se situent en haut du script.

Il y a trois appel à AWS Cli dans ce script : réalisation de la liste des photos se trouvant dans les répertoires du bucket dit « de base », appel du service Rekognition pour chaque photo de la liste, copie éventuelle de la photo dans un répertoire résultat en cas de réussite de la détection.

Deux aspects fonctionnels sont pris en compte dans le script shell : les noms de répertoires et photos comportent des espaces, des photos portent le même nom.

#------------------------------------------------------------------------------------------
# script pour lire des photos dans un bucket s3, les comparer avec
# une photo de reference a l'aide du service Rekognition
#
# JPC 04/10/20
#------------------------------------------------------------------------------------------

#!/bin/bash

BUCKET_BASE="reko-image"
IMAGE_REF=eng_9ans.JPG
BUCKET_RESULTAT="reko-image"
REPERTOIRE_RESULTAT="resultat"
FIC_TEMP="./list-fic.txt"
POURCENT_REUSSITE=98

#-----------------------------------------------
# listage des images sur bucket
#-----------------------------------------------
# il y a des noms de fic ou repertoire avec des spaces d'ou le "#" pour obtenir un fichier par ligne
RETOUR="$(aws s3 ls s3://reko-image --recursive --human-readable --summarize | awk '{$1=$2=$3=$4=""; print $0}' | sed 's/^[ \t]*/#/')"

echo "$RETOUR"|awk -F "#" '{print $0}'|tr -d "#" > $FIC_TEMP

#-----------------------------------------------
# boucle sur images listees
#-----------------------------------------------
while read ligne;do

  echo -e "\nImage traitee $ligne"

  #-----------------------------------------------
  # comparaison de chaque image avec l'image de reference
  #-----------------------------------------------
  commande="\
  aws rekognition compare-faces \
  --source-image '{\"S3Object\":{\"Bucket\":\""$BUCKET_BASE"\",\"Name\":\""$IMAGE_REF"\"}}' \
  --target-image '{\"S3Object\":{\"Bucket\":\""$BUCKET_BASE"\",\"Name\":\""$ligne"\"}}' \
  --similarity-threshold $POURCENT_REUSSITE \
  --query 'FaceMatches[0].Similarity' 2>/dev/null"

  RETOUR_COMPARE=$(eval $commande)

  if [ "$RETOUR_COMPARE" != "" ];then

      # comparaison de float avec bc
     if (( $(echo "$RETOUR_COMPARE > $POURCENT_REUSSITE" |bc -l) )); then

        echo -e "retour comparaison OK a $RETOUR_COMPARE %  fichier $ligne"
        # plusieurs fichiers peuvent porter le meme nom. On realise un nom unique a partir du nom du repertoire
        nom_fic_trouve=$(echo ${ligne}|tr "/" "_"|tr " " "_")
        comande_copie=" aws s3 cp \"s3://${BUCKET_BASE}/${ligne}\" \
                      s3://${BUCKET_RESULTAT}/${REPERTOIRE_RESULTAT}/${nom_fic_trouve}"
        eval $comande_copie
   fi
fi

done < $FIC_TEMP

 

Exemple de résultats

 

Voici la photo de référence   

Et quelques photos remontées par Amazon Rekognition. Je n’ai pas mesuré précisément le temps de traitement, il est de moins d’une seconde.

La réussite est au rendez-vous, il s’agit d’un service professionnel de haute qualité !!!

 

Utilisation professionnelle

La facilité déconcertante d’utilisation de ce service ainsi que son taux de réussite laisse pantois. Lorsque l’on pense pendant quelques instants au travail de développement que demande une telle application, il y a beaucoup à gagner pour une entreprise à utiliser ce service dans le cadre d’un projet.

 

Coût du service

Reste le coût, qui est élevé dans le cadre d’une utilisation familiale (pour ma part je bénéficie de crédits AWS en tant que formateur 😉 ) : 1$ les 1000 photos traitées.
Mais le résultat est au rendez-vous !

 

Pour aller plus loin

Si vous souhaitez en savoir plus et vous former sur Amazon Web Services, découvrez notre offre de formations officielles AWS.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée.